Solutions of Initial Value Problems(IVPs) (Numerical Method)
Euler Method
Formula: xi+1=xi+hf(ti,xi)
[xi+1yi+1]=[xiyi]+hf(ti,[xiyi])
[xi+1yi+1]=[xiyi]+hf(ti,[xiyi])
1) Solve x′=x−t2+1, 0≤t≤2, x(0)=0.5 with h=0.2 using Euler method numerically. Find x2
Solution:xi+1=xi+hf(ti,xi)
Note that: ti=a+ih⇒t0=0,t1=0+0.2=0.2,t2=0+2(0.2)=0.4,...
let i=0,
x1=x0+(0.2)f(t0,x0)=0.5+0.2(x0−(t0)2+1)=0.5+0.2(0.5−0+1)=0.8
let i=1,
x2=x1+(0.2)f(t1,x1)=0.8+0.2(0.8−(0.2)2+1)=1.152
2) {x′=x(1−y),x(0)=2y′=−y(1−x),y(0)=1,h=0.1
Use Euler method to find [x2y2]
Solution:
[xi+1yi+1]=[xiyi]+hf(ti,[xiyi])
When i=0,
[x1y1]=[x0y0]+(0.1)f(t0,[x0y0])=[21]+0.1[2(1−1)−1(1−2)]=[21.1]
When i=1,
[x2y2]=[x1y1]+(0.1)f(t1,[x1y1])=[21.1]+0.1[2(1−1.1)−1.1(1−2)]=[1.981.21]
Taylor Method
Formula:
xi+1=xi+hf′(ti,xi)+h22!f″(ti,xi)+h33!f‴(ti,xi)+...
1) Apply Taylor method of order 4 on x′=tx13 to find the approximation with x(1)=1. Find x1
Solution:
x′(t)=f′(x)=tx13
x″(t)=f″(x)=ddt(x′(t))=ddt(tx13)=x13+13t2x−13
x‴(t)=f‴(x)=ddt(x″(t))=ddt(x13+13t2x−13)=13tx−13+23t2x−13−19t3x−1
x(4)(t)=f(4)(x)=ddt(x‴(t))=ddt(13tx−13+23t2x−13−19t3x−1)=(13x−13−19t2x−1)+(43tx−13−29t3x−1)−(19t2x−1+19t4x−53)
let i=0,
x1=x0+hf′(t0,x0)+h22!f″(t0,x0)+h33!f‴(t0,x0)+h44!f(4)(t0,x0)=1+0.1(1)+(0.1)22!(1+13)+(0.1)33!(13+23−19)+(0.1)44!(13−19+43−29−19−19)=1.106819444
Runge-Kutta Method
Consider the initial value problem x′=−5x+5t2+2t,0≤t≤1,x(0)=1. Calculate x1
Solution:
let i=0,
k1=f(t0,x0)=−5(1)+5(0)2+2(0)=−5x1=1+0.1f(0+0.12,1+0.12(−5))=1+0.1f(0.05,0.75)=1+0.1(−5(0.75)+5(0.05)2+2(0.05))=0.6325
Solution:
let i=0,
k1=f(t0,x0)=−5(1)+5(0)2+2(0)=−5k2=f(0+0.13,1+0.13(−5))=f(130,56)=−5(56)+5(130)2+2(130)=−737180k3=f(0+2(0.1)3,1+2(0.1)3(−737180))=f(115,19632700)=−5(19632700)+5(115)2+2(115)=−−1879540x1=x0+0.14(k1+3k3)=1+140(−5+3(−1879540))=0.614028
Formula:
k1=f(ti,xi)k2=f(ti+h2,xi+h2k1)k3=f(ti+h2,xi+h2k2)k4=f(ti+1,xi+hk3)xi+1=xi+h6(k1+2k2+3k3+k4)
Solution:
let i=0,
k1=f(t0,x0)=−5k2=f(0+0.12,1+0.12(−5))=f(120,34)=−5(34)+5(120)2+2(120)=−29180k3=f(0+0.12,1+0.12(−29180))=f(120,13091600)=−5(12091600)+5(120)2+2(120)=−1273320k4=f(0+0.1,1+0.1(−1273320))=f(0.1,19273200)=−5(19273200)+5(0.1)2+2(0.1)=−1767640x1=1+0.16(−5+2(−29180)+2(−1273320)+(−1767640))=0.616796875
Solution:xi+1=xi+hf(ti,xi)
Note that: ti=a+ih⇒t0=0,t1=0+0.2=0.2,t2=0+2(0.2)=0.4,...
let i=0,
x1=x0+(0.2)f(t0,x0)=0.5+0.2(x0−(t0)2+1)=0.5+0.2(0.5−0+1)=0.8
let i=1,
x2=x1+(0.2)f(t1,x1)=0.8+0.2(0.8−(0.2)2+1)=1.152
2) {x′=x(1−y),x(0)=2y′=−y(1−x),y(0)=1,h=0.1
Use Euler method to find [x2y2]
Solution:
[xi+1yi+1]=[xiyi]+hf(ti,[xiyi])
When i=0,
[x1y1]=[x0y0]+(0.1)f(t0,[x0y0])=[21]+0.1[2(1−1)−1(1−2)]=[21.1]
When i=1,
[x2y2]=[x1y1]+(0.1)f(t1,[x1y1])=[21.1]+0.1[2(1−1.1)−1.1(1−2)]=[1.981.21]
Taylor Method
Formula:
xi+1=xi+hf′(ti,xi)+h22!f″(ti,xi)+h33!f‴(ti,xi)+...
1) Apply Taylor method of order 4 on x′=tx13 to find the approximation with x(1)=1. Find x1
Solution:
x′(t)=f′(x)=tx13
x″(t)=f″(x)=ddt(x′(t))=ddt(tx13)=x13+13t2x−13
x‴(t)=f‴(x)=ddt(x″(t))=ddt(x13+13t2x−13)=13tx−13+23t2x−13−19t3x−1
x(4)(t)=f(4)(x)=ddt(x‴(t))=ddt(13tx−13+23t2x−13−19t3x−1)=(13x−13−19t2x−1)+(43tx−13−29t3x−1)−(19t2x−1+19t4x−53)
let i=0,
x1=x0+hf′(t0,x0)+h22!f″(t0,x0)+h33!f‴(t0,x0)+h44!f(4)(t0,x0)=1+0.1(1)+(0.1)22!(1+13)+(0.1)33!(13+23−19)+(0.1)44!(13−19+43−29−19−19)=1.106819444
Runge-Kutta Method
Consider the initial value problem x′=−5x+5t2+2t,0≤t≤1,x(0)=1. Calculate x1
- Midpoint method (Runge-Kutta's method of order 2)
Formula:
k1=f(ti,xi)xi+1=xi+hf(ti+h2,xi+h2ki)
Solution:
let i=0,
k1=f(t0,x0)=−5(1)+5(0)2+2(0)=−5x1=1+0.1f(0+0.12,1+0.12(−5))=1+0.1f(0.05,0.75)=1+0.1(−5(0.75)+5(0.05)2+2(0.05))=0.6325
- Heun's third order method (Runge-Kutta's method of order 3)
Formula:
k1=f(ti,xi)k2=f(ti+h3,xi+h3k1)k3=f(ti+2h3,xi+2h3k2)xi+1=xi+h4(k1+3k3)
Solution:
let i=0,
k1=f(t0,x0)=−5(1)+5(0)2+2(0)=−5k2=f(0+0.13,1+0.13(−5))=f(130,56)=−5(56)+5(130)2+2(130)=−737180k3=f(0+2(0.1)3,1+2(0.1)3(−737180))=f(115,19632700)=−5(19632700)+5(115)2+2(115)=−−1879540x1=x0+0.14(k1+3k3)=1+140(−5+3(−1879540))=0.614028
- Runge-Kutta's method of order 4
Formula:
k1=f(ti,xi)k2=f(ti+h2,xi+h2k1)k3=f(ti+h2,xi+h2k2)k4=f(ti+1,xi+hk3)xi+1=xi+h6(k1+2k2+3k3+k4)
Solution:
let i=0,
k1=f(t0,x0)=−5k2=f(0+0.12,1+0.12(−5))=f(120,34)=−5(34)+5(120)2+2(120)=−29180k3=f(0+0.12,1+0.12(−29180))=f(120,13091600)=−5(12091600)+5(120)2+2(120)=−1273320k4=f(0+0.1,1+0.1(−1273320))=f(0.1,19273200)=−5(19273200)+5(0.1)2+2(0.1)=−1767640x1=1+0.16(−5+2(−29180)+2(−1273320)+(−1767640))=0.616796875
Comments
Post a Comment