Interpolation & Curve Fitting(Numerical Method)

Lagrange Form

(2,21),(1,6),(3,26),(2,13)

Find the interpolating polynomial of these points in the Lagrange Form

Solution:

(2,21),(1,6),(3,26),(2,13)

Lagrange form for (2,21)=21(x1)(x3)(x2)(21)(23)(22)

(2,21),(1,6),(3,26),(2,13)

Lagrange form for (1,6)=6(x(2))(x3)(x2)(1(2))(13)(12)

(2,21),(1,6),(3,26),(2,13)

Lagrange form for (3,26)=26(x(2))(x1)(x2)(3(2))(31)(32)

(2,21),(1,6),(3,26),(2,13)

Lagrange form for (2,13)=13(x(2))(x1)(x3)(2(2))(21)(23)


Lagrange Form:

P(x)=21(x1)(x3)(x2)(21)(23)(22)+6(x+2)(x3)(x2)(1+2)(13)(12)+26(x+2)(x1)(x2)(3+2)(31)(32)+13(x+2)(x1)(x3)(2+2)(21)(23)

**To obtain Natural Form, expand the Lagrange Form



Newton Form

y(x)=sin(πx2)

Write the interpolating polynomial in Newton Form for x=1,2,3,4


ixiyi000111y1y0x1x0=1010=1220y2y1x2x1=0121=1331y3y2x3x2=1032=1440y4y3x4x3=0(1)43=1
ixiyi0001111220111x2x0=1120=133111(1)x3x1=1(1)31=044011(1)x4x2=1(1)42=1
ixiyi000111122011331100(1)x3x0=0(1)30=134401110x4x0=1041=13
ixiyi000111122011331101344011131313x4x0=131340=0
ixiyi000111122011331101344011130

**Newton Form can have two forms: Newton Forward Divided-Differences and Newton Backward Divided-Differences**


  • Newton Forward Divided-Differences
ixiyi000111122011331101344011130

P(x)=0+(1)(x0)+(1)(x1)(x0)+(13)(x2)(x1)(x0)+(0)(x3)(x2)(x1)(x0)



  • Newton Backward Divided-Differences
ixiyi000111122011331101344011130

P(x)=0+(1)(x4)+(1)(x4)(x3)+(13)(x4)(x3)(x2)+(0)(x4)(x3)(x2)(x1)


Hermite Interpolation

xkykyk8.317.564923.1162568.618.505153.151762

Construct an approximating Hermite polynomial for the above specification.

Solution:

xkykyk8.317.564928.317.564923.1162568.618.5051518.5051517.564928.68.3=3.13418.618.505153.151762

xkykyk8.317.564928.317.564923.1162568.618.505153.13413.13413.1162568.68.3=0.059488.618.505153.1517623.1517623.13418.68.3=0.058873

xkykyk8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.0588730.0588730.059488.68.3=0.0020222

xkykyk8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.0588730.0020222

Hermit Polynomial
xkykyk8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.0588730.0020222

H(x)=17.56492+(3.116256)(x8.3)+(0.05948)(x8.3)(x8.3)+(0.020222)(x8.3)(x8.3)(x8.6)

Comments

Popular Posts