Interpolation & Curve Fitting(Numerical Method)
Lagrange Form
**To obtain Natural Form, expand the Lagrange Form
Newton Form
ixiyi000111y1−y0x1−x0=1−01−0=1220y2−y1x2−x1=0−12−1=−133−1y3−y2x3−x2=−1−03−2=−1440y4−y3x4−x3=0−(−1)4−3=1
↓
Hermite Interpolation
(−2,21),(1,6),(3,26),(2,13)
Find the interpolating polynomial of these points in the Lagrange Form
Solution:
(−2,21),(1,6),(3,26),(2,13)
Lagrange form for (−2,21)=21(x−1)(x−3)(x−2)(−2−1)(−2−3)(−2−2)
(−2,21),(1,6),(3,26),(2,13)
Lagrange form for (1,6)=6(x−(−2))(x−3)(x−2)(1−(−2))(1−3)(1−2)
(−2,21),(1,6),(3,26),(2,13)
Lagrange form for (3,26)=26(x−(−2))(x−1)(x−2)(3−(−2))(3−1)(3−2)
(−2,21),(1,6),(3,26),(2,13)
Lagrange form for (2,13)=13(x−(−2))(x−1)(x−3)(2−(−2))(2−1)(2−3)
Lagrange Form:
P(x)=21(x−1)(x−3)(x−2)(−2−1)(−2−3)(−2−2)+6(x+2)(x−3)(x−2)(1+2)(1−3)(1−2)+26(x+2)(x−1)(x−2)(3+2)(3−1)(3−2)+13(x+2)(x−1)(x−3)(2+2)(2−1)(2−3)
**To obtain Natural Form, expand the Lagrange Form
Newton Form
y(x)=sin(πx2)
Write the interpolating polynomial in Newton Form for x=1,2,3,4
Write the interpolating polynomial in Newton Form for x=1,2,3,4
ixiyi000111y1−y0x1−x0=1−01−0=1220y2−y1x2−x1=0−12−1=−133−1y3−y2x3−x2=−1−03−2=−1440y4−y3x4−x3=0−(−1)4−3=1
↓
ixiyi0001111220−1−1−1x2−x0=−1−12−0=−133−1−1−1−(−1)x3−x1=−1−(−1)3−1=044011−(−1)x4−x2=1−(−1)4−2=1
↓
ixiyi0001111220−1−133−1−100−(−1)x3−x0=0−(−1)3−0=13440111−0x4−x0=1−04−1=13
↓
ixiyi0001111220−1−133−1−1013440111313−13x4−x0=13−134−0=0
↓
ixiyi0001111220−1−133−1−101344011130
**Newton Form can have two forms: Newton Forward Divided-Differences and Newton Backward Divided-Differences**
- Newton Forward Divided-Differences
ixiyi0001111220−1−133−1−101344011130
P(x)=0+(1)(x−0)+(−1)(x−1)(x−0)+(13)(x−2)(x−1)(x−0)+(0)(x−3)(x−2)(x−1)(x−0)
- Newton Backward Divided-Differences
ixiyi0001111220−1−133−1−101344011130
P(x)=0+(1)(x−4)+(1)(x−4)(x−3)+(13)(x−4)(x−3)(x−2)+(0)(x−4)(x−3)(x−2)(x−1)
Hermite Interpolation
xkyky′k8.317.564923.1162568.618.505153.151762
Construct an approximating Hermite polynomial for the above specification.
Solution:
xkyky′k8.317.564928.317.564923.1162568.618.5051518.50515−17.564928.6−8.3=3.13418.618.505153.151762
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13413.1341−3.1162568.6−8.3=0.059488.618.505153.1517623.151762−3.13418.6−8.3=0.058873
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.0588730.058873−0.059488.6−8.3=−0.0020222
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.058873−0.0020222
Hermit Polynomial
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.058873−0.0020222
H(x)=17.56492+(3.116256)(x−8.3)+(0.05948)(x−8.3)(x−8.3)+(−0.020222)(x−8.3)(x−8.3)(x−8.6)
Solution:
xkyky′k8.317.564928.317.564923.1162568.618.5051518.50515−17.564928.6−8.3=3.13418.618.505153.151762
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13413.1341−3.1162568.6−8.3=0.059488.618.505153.1517623.151762−3.13418.6−8.3=0.058873
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.0588730.058873−0.059488.6−8.3=−0.0020222
↓
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.058873−0.0020222
Hermit Polynomial
xkyky′k8.317.564928.317.564923.1162568.618.505153.13410.059488.618.505153.1517620.058873−0.0020222
H(x)=17.56492+(3.116256)(x−8.3)+(0.05948)(x−8.3)(x−8.3)+(−0.020222)(x−8.3)(x−8.3)(x−8.6)
Comments
Post a Comment