Vectors (Part 1)
Vectors
7.1 Operations on vectors (+, -, $\times$)
1. Write
down, in the form $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$, the vector represented
by $\overrightarrow{OP}$ if $P$ is a point of with coordinates
a) $(3,6,4)$
b) $(1,-2,-7)$
c) $(1,0,-3)$
2. $\overrightarrow{OP}$
represents a vertor r. Write
down the coordinates of $P$ if
a) r = $5\mathbf{i}-7\mathbf{j}+2\mathbf{k}$
b) r = $\mathbf{i}+4\mathbf{j}$
c) r = $\mathbf{j}-\mathbf{k}$
3. If
the point $A(2,-1,3)$ and $\overrightarrow{AB} = 5\mathbf{i}-7\mathbf{j}+2\mathbf{k}$,
find $\overrightarrow{OB}$.
4. If a = $\mathbf{i}+\mathbf{j}+\mathbf{k}$,
b = $2\mathbf{i}-\mathbf{j}+3\mathbf{k}$, c = $-\mathbf{i}+3\mathbf{j}-\mathbf{k}$,
find
a) a + b
b) a - c
c) a + b + c
d) a - 2b + 3c
5. The
triangle $ABC$ has its vertices at the points $A(-1,3,0)$, $B(-3,0,7)$ and $C(-1,2,3)$,
Find in the form $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$ of the vector
a) $\overrightarrow{AB}$
b) $\overrightarrow{AC}$
c) $\overrightarrow{CB}$
6. $A,B,C$
and $D$ are the points $(0,0,2),(-1,3,2),(1,0,4)$ and $(-1,2,-2)$ respectively.
Find the vectors of
a) $\overrightarrow{AB}$
b) $\overrightarrow{BD}$
c) $\overrightarrow{CD}$
d) $\overrightarrow{AD}$
7. Given
that $\overrightarrow{AB} = 3\mathbf{i}+5\mathbf{j}-4\mathbf{k}$ and $\overrightarrow{BC}
= -\mathbf{i}+4\mathbf{j}-\mathbf{k}$, find $\overrightarrow{AC}$.
8. Given
that $\overrightarrow{AB} = 2\mathbf{i}-4\mathbf{j}+5\mathbf{k}$ and $\overrightarrow{BC}
= 3\mathbf{i}+6\mathbf{j}-2\mathbf{k}$, find $\overrightarrow{AC}$.
9. Given
that $\overrightarrow{AB} = 5\mathbf{i}-7\mathbf{j}-2\mathbf{k}$ and $\overrightarrow{AC}
= 2\mathbf{i}+3\mathbf{j}-2\mathbf{k}$, find $\overrightarrow{BC}$.
10.
Given a = $2\mathbf{i}-\mathbf{j}-\mathbf{k}$
and b = $-\mathbf{i}+3\mathbf{j}+\mathbf{k}$.
a) Find a + b and a – b
b) Draw
a diagram showing a + b and another showing a – b
11.
Given $\overrightarrow{AB} = \alpha \mathbf{i}+6\mathbf{j}+4\mathbf{k}$ ,
$\overrightarrow{BC} = 4\mathbf{i}+\beta \mathbf{j}-3\mathbf{k}$, and
$\overrightarrow{AC} = -3\mathbf{i}+\theta \mathbf{k}$, find the values of the
constants $\alpha$ , $\beta$ and $\theta$
7.2 Parallel vectors
1. Prove
that the points $A(2,-1,3)$, $B(6,7,-1)$ and $C(-4,-13,9)$ are collinear
In questions
2 to 4, $\overrightarrow{OA} =$ a$=
4\mathbf{i}-12\mathbf{j}$, $\overrightarrow{OB} =$ b$= \mathbf{i}+6\mathbf{j}$.
2. Which
of the following are parallel to a?
a) $\mathbf{i}+3\mathbf{j}$
b)
$4\mathbf{i}-12\mathbf{j}$
c)
$12\mathbf{i}-4\mathbf{j}$
d)
$-4\mathbf{i}+12\mathbf{j}$
e)
$\mathbf{i}-3\mathbf{j}$
3. Which
of the following vectors are equal to b?
a)
$2\mathbf{i}+12\mathbf{j}$
b)
$-\mathbf{i}-6\mathbf{j}$
c) $\overrightarrow{AE}$
if $E(5,-6)$
d) $\overrightarrow{AF}$
if $F(6,0)$
4. If $\overrightarrow{OD}=
\lambda \overrightarrow{OA}$, find the value of $\lambda$ for which $\overrightarrow{OD}+\overrightarrow{OB}$
is parallel to the $x$-axis.
5. Which
of the following vectors are parallel to $3\mathbf{i}-\mathbf{j}-2\mathbf{k}$
a) $6\mathbf{i}-3\mathbf{j}-4\mathbf{k}$
b) $-9\mathbf{i}+3\mathbf{j}+6\mathbf{k}$
c) $-3\mathbf{i}-\mathbf{j}-2\mathbf{k}$
d) $-2(3\mathbf{i}+\mathbf{j}+2\mathbf{k})$
e) $\frac{3}{2}\mathbf{i}-\frac{1}{2}\mathbf{j}-\mathbf{k}$
f) $-\mathbf{i}+\frac{1}{3}\mathbf{j}+\frac{2}{3}\mathbf{k}$
6. The
position vectors of the points $A,B$ and $C$ are $2\mathbf{i}-\mathbf{j}+\mathbf{k}$,
$3\mathbf{i}+2\mathbf{j}-\mathbf{k}$ and $6\mathbf{i}+11\mathbf{j}-7\mathbf{k}$,
respectively. Show that $A,B$ and $C$ are collinear.
7. Given
that $\overrightarrow{PQ}= \pmatrix{5\\2\\-8}$ and $\overrightarrow{PR}=
\pmatrix{-2\\5\\-6}$, find $\overrightarrow{QR}$
8. The
position vectors of the points $P,Q$ and $R$ are $\pmatrix{5\\4\\1}$, $\pmatrix{7\\5\\4}$
and $\pmatrix{11\\7\\10}$ respectively,
a) Find $\overrightarrow{PQ}$ and $\overrightarrow{QR}$
b) deduce that $P,Q$ and $R$ are collinear
and find the ratio $PQ:QR$
9. The
coordinates of the points $A,B$ and $C$ are $(1,5,-6)$, $(3,-2,10)$ and $(7,4,18)$
respectively. Show that $A,B$ and $C$ are collinear.
10. Show
that the points $P(5,4,-3)$ and $Q(3,8,-1)$ and $R(0,14,2)$ are collinear.
11. If
the points $A(2,13,-5)$ and $B(3,\beta , -3)$ and $C(6,-7,\theta)$ are
collinear, find the values of the constants $\beta$ and $\theta$
12. If $\mathbf{u}
= 2\mathbf{i}-\mathbf{j}+3\mathbf{k}$ and $\mathbf{v} = -6\mathbf{i}+3\mathbf{j}+\lambda
\mathbf{k}$, find the value of $\lambda$ when $\mathbf{u}$ and $\mathbf{v}$ are
parallel.
7.3.1 Magnitude of vector
Find the
magnitude of each of these vectors
1. $4\mathbf{i}+3\mathbf{j}$
2. $5\mathbf{i}-7\mathbf{j}$
3. $2\mathbf{i}-2\mathbf{j}+\mathbf{k}$
4. $6\mathbf{i}-3\mathbf{j}+4\mathbf{k}$
5. $\pmatrix{12\\5}$
6. $\pmatrix{2\\-4}$
7. $\pmatrix{-9\\7}$
8. $\pmatrix{5\\-7\\3}$
9. Find
the length of the line $OP$ if $P$ is the point
a) $(2,-1,4)$
b) $(3,0,4)$
c) $(-2,-2,1)$
10. Find
the modulus of vector V if
a) V
= $2\mathbf{i}-4\mathbf{j}+4\mathbf{k}$
b) V
= $6\mathbf{i}+2\mathbf{j}-3\mathbf{k}$
c) V
= $11\mathbf{i}-7\mathbf{j}-6\mathbf{k}$
11.
Given that v =
$k\mathbf{i}+5\mathbf{j}-\sqrt{7}\mathbf{k}$ and |v|=9, find the possible value for $k$.
12.
Given that $|2\mathbf{i}+k\mathbf{j}-4\mathbf{k}|=6$, find the possible value
for $k$.
13. If $|k\mathbf{i}+4\mathbf{j}+4\mathbf{k}|=13$,
find the possible values of $k$.
14. $A,B,C,D$
are the points with the vector $\mathbf{i}+\mathbf{j}-\mathbf{k}$, $\mathbf{i}-\mathbf{j}+2\mathbf{k}$,
$\mathbf{j}+\mathbf{k}$, $2\mathbf{i}+\mathbf{j}$ respectively, find |AB| and |BD|
7.3.2 Unit vectors
Find a
unit vector in the direction of each of the following vectors
1. $8\mathbf{i}-6\mathbf{j}$
2. $5\mathbf{i}-8\mathbf{j}$
3.
$2\mathbf{i}+2\mathbf{j}-\mathbf{k}$
4. $6\mathbf{i}-2\mathbf{j}-3\mathbf{k}$
5.
$3\mathbf{i}+4\mathbf{j}$
6.
$\mathbf{i}+\mathbf{j}+4\mathbf{k}$
7. $\pmatrix{12\\5}$
8. $\pmatrix{-7\\9}$
9. $\pmatrix{5\\-7\\3}$
10. $\pmatrix{-3\\12\\-4}$
Find the
coordinates of $Q$ if |OQ|=1
and $OQ$ is in the direction of:
11.
$\mathbf{i}+2\mathbf{j}-2\mathbf{k}$
12.
$3\mathbf{i}+2\mathbf{j}+6\mathbf{k}$
13.
$8\mathbf{i}-\mathbf{j}-4\mathbf{k}$
14
$\mathbf{i}-\mathbf{j}-\mathbf{k}$
15. Find
the vector v if
a) v = $\overrightarrow{OP}$ where $P$ is
the point $(0,4,5)$
b) |v|=24
units and $\hat{\text{V}}=\frac{2}{3}\mathbf{i}+\frac{2}{3}\mathbf{j}-\frac{1}{3}\mathbf{k}$
c) v
is parallel to the vector $8\mathbf{i}+\mathbf{j}+4\mathbf{k}$ and equal in
magnitude to the vector $\mathbf{i}-2\mathbf{j}+2\mathbf{k}$
16. Find $\hat{\text{r}}$ in the form $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$
a) r = $\mathbf{i}-\mathbf{j}+\mathbf{k}$
b) r = $5\mathbf{j}-12\mathbf{k}$
c) r = $\mathbf{i}$
17. Given
$\overrightarrow{OA}=2\mathbf{i}+3\mathbf{j}-6\mathbf{k}$ and $\overrightarrow{OC}=-2\mathbf{i}+5\mathbf{j}-2\mathbf{k}$.
Find the vector which is in the same direction as $\overrightarrow{AC}$ and has
magnitude $12$.
7.4 Scalar product and angles
between 2 vectors
1. State
whether the angle between following pairs of vectors is acute, obtuse or right
angle.
a) $(\mathbf{i}+2\mathbf{j}),(\mathbf{i}-2\mathbf{j}+5\mathbf{k})$
b) $(\mathbf{k}),(\mathbf{i}-2\mathbf{j}-5\mathbf{k})$
c) $\pmatrix{2\\-3\\7},\pmatrix{-1\\4\\2}$
d) $\pmatrix{0\\-3\\1},\pmatrix{1\\1\\2}$
e) $\pmatrix{2\\-1\\5},\pmatrix{-1\\-7\\1}$
2. Find
the angle between the vectors
a) $\pmatrix{2\\-1\\3},\pmatrix{1\\0\\-2}$
b) $\pmatrix{-1\\2\\2},\pmatrix{2\\-3\\6}$
c) $\pmatrix{2\\3\\1},\pmatrix{4\\-2\\-2}$
d) $(2\mathbf{i}-7\mathbf{j}+\mathbf{k}),(\mathbf{i}+\mathbf{j}-\mathbf{k})$
3. Find
the value of $a$ if the vectors $2\mathbf{i}+a\mathbf{j}-3\mathbf{k}$ and $\mathbf{i}-2\mathbf{j}+4\mathbf{k}$
are perpendicular.
4. Two
vectors a and b are such that |a|=2 and |b|=4 and the angle between a and b is
$\frac{1}{3}\pi$, find the angle between
a) a
and a – b
b) b
and a + b
c) 3a
– b and b
5. Given
that u = $-2\mathbf{j}+2\mathbf{k}$
and v = $-3\mathbf{k}$
a) Find |u| and |v|
b) Find u$\cdot$v
by using the definition u$\cdot$v = |u| |v| $\cos\theta$
c) Find u$\cdot$v
by using the components of the vectors
6. If r = $\pmatrix{2\\-3\\4}$ , s = $\pmatrix{1\\-7\\2}$ and t = $\pmatrix{5\\0\\-1}$, find
a) s
+ t
b) r$\cdot$s
c) r$\cdot$t
d) r(s + t)
e) r$\cdot$s + r$\cdot$t
7. If u = $2\mathbf{i}+\mathbf{j}-\mathbf{k}$
and v = $\mathbf{i}+2\mathbf{j}+10\mathbf{k}$,
find
a) u$\cdot$u
b) u$\cdot$v
c) v$\cdot$u
d) u(u + v)
8. Given
that u = $2\mathbf{i}-\mathbf{j}+3\mathbf{k}$
and v = $-6\mathbf{i}+3\mathbf{j}+\lambda
\mathbf{k}$, find the value $\lambda$ when
a) u
and v are parallel
b) u
and v are perpendicular
9. The
cosine of the angle between two vectors a = $6\mathbf{i}+3\mathbf{j}-2\mathbf{k}$
and b = $-2\mathbf{i}+\lambda\mathbf{j}-4\mathbf{k}$ is $\frac{4}{21}$,
find the positive value of $\lambda$
10. Show
that $\mathbf{i}+7\mathbf{j}+3\mathbf{k}$ is perpendicular to both
$\mathbf{i}-\mathbf{j}+2\mathbf{k}$ and $2\mathbf{i}+\mathbf{j}-3\mathbf{k}$
Comments
Post a Comment