Quadratics
Quadratics
1.1 Solving quadratic equation
1.1 Solving quadratic equation
A) Find
the zeros of the following
1.
$(x-3)(x+2)=0$
2.
$(2x+5)(2x+5)=0$
3.
$x(x+2)=0$
4.
$12(x+3)(2x+1)=0$
B) Find
the roots of the following equations:
1.
$x^{2}+5x+6=0$
2.
$x^{2}+x=6$
3.
$x^{2}-x-6=0$
4.
$4x^{2}-9x+2=0$
5. $x^{2}+4x=5$
6.
$x^{2}+x-72=0$
7.
$x^{2}-2x-3=0$
8.
$x^{2}+5x+4=0$
9.
$x^{2}-6x+5=0$
10.
$x^{2}+3x-10=0$
11.
$x^{2}-5x=14$
12.
$x^{2}+14=9x$
1.2 The
process of completing the square
A) Write
the following expression in the form $a(x+p)^{2} + q$
1. $x^{2}-2x+3$
2.
$x^{2}+4x+1$
3.
$–x^{2}+2x+2$
4.
$-x^{2}+8x-19$
5.
$-2x^{2}+5x-3$
6.
$2x^{2}-3x-2$
B) Solve
the following equations, by completing the square, give your answer in surd
form
1.
$x^{2}+8x=1$
2.
$x^{2}-2x-2=0$
3.
$x^{2}+x-1=0$
4.
$x^{2}-x=3$
5. $4x^{2}+x-1=0$
6.
$2x^{2}-3x-4=0$
7.
$3x^{2}+x-1=0$
8.
$2x^{2}+4x=7$
1.3
Solving quadratic equations by using the formula
A) Solve
the equations by using the formula, give your answers in surd form
1.
$x^{2}+4x+2=0$
2.
$2x^{2}-x-2=0$
3.
$1+x-3x^{2}=0$
4. $2x^{2}-x=5$
B) Find,
correct to 3 decimal places, the roots of equations
1.
$5x^{2}+9x+2=0$
2.
$2x^{2}-7x+4=0$
3.
$8x-x^{2}=1$
4.
$x^{2}-3x=1$
1.4
Locate the vertex of the functions
A) For
each following, use the method of completing the square find the maximum or
minimum value of $y$ and the value of $x$ at which it occurs
1. $y=x^{2}+2x-5$
2. $y=x^{2}+3x+8$
3. $y=x^{2}-7x+15$
4. $y=2x^{2}+10x-5$
5. $y=3x^{2}+6x+14$
6. $y=4x^{2}+x-7$
7. $y=20+6x-x^{2}$
8. $y=4-3x-x^{2}$
9. $y=-2+4x-x^{2}$
10. $y=6-x-x^{2}$
11. $y=3+2x-2x^{2}$
12. $y=7-3x-4x^{2}$
B) By
completing the square, sketch the graphs of these quadratics
1. $y=x^{2}-6x+8$
2. $y=2x^{2}+2x-15$
3. $y=3-4x-4x^{2}$
4. $y=2x^{2}-4x+5$
5. $y=8+2x-x^{2}$
6. $y=4x^{2}-20x+21$
1.5 The
properties of the roots of quadratic equations
A)
Without solving the equation, determine the nature of the roots of each
equation
1.
$x^{2}-6x+4$
2.
$3x^{2}+4x+2$
3.
$2x^{2}-5x+3$
4.
$x^{2}-6x+9$
5.
$4x^{2}+12x+9$
6.
$x^{2}+4x-8$
7.
$x^{2}-ax+a^{2}$
8.
$x^{2}+2ax+a^{2}$
B)
1. Show
that $x^{2}+3x+5>0$ for all values of
$x$.
2. Show
that $3-2x-x^{2}<0$ for $x>1$.
3. If
the roots of $3x^{2}+kx+12=0$ are equal, find $k$.
4. The
roots of $x^{2}+px+(p+1)=0$ are equal, find $p$.
5. Find
the possible values of the constant $p$ given that the equation
$px^{2}+(8-p)x+1=0$ has the repeated root.
6. Given
that the equation $x^{2}+3bx+(4b+1)=0$ has a repeated root, find the possible
values of the constant $b$.
7. Prove
that the roots of the equation $kx^{2}+(2k+4)x+8=0$ are real for all values of
$k$.
8. Find
the relationship between $p$ and $q$ if the roots of $px^{2}+qx+1=0$ are equal.
C)
1. Find
the range of values of $a$ for which $(2-3a)x^{2}+(4-a)x+2=0$ has no real
roots.
2. Find
the values of $k$ for which the line $y=x+k$ is a tangent to the curve
$x^{2}+xy+2=0$.
3. Find
the real values of $k$ for which the equation $x^{2}+(k+1)x+k^{2}=0$ has real
roots.
4. The
equation $x^{2}+x(2x+p)+3=0$ has equal roots, find the possible values of $p$.
5. If
the equation $2kx^{2}+4x-3=0$ has equal roots, find the value of $k$.
6. If
$y=kx+x+19$ is the tangent to the curve $y=x^{2}+5k$. Find the possible values
of $k$.
7. Find
the range of values of $m$ for which $mx^{2}+3x+5=0$ can be solved.
1.6
Solve linear and quadratics inequalities
A) Solve
the following inequalities
1.
$3x+2>x+8$
2.
$3x-2<4x-7$
3.
$1<2x-3<9$
4.
$(x-3)(x+1)<0$
5.
$x^{2}-3>2x$
6.
$-x^{2}+4x-3<0$
7.
$x-4<3-x$
8.
$x+3<3x-5$
9.
$2(3x-5)>6$
10.
$3(3-2x)<2(3+x)$
Find the
ranges of values of $x$ that satisfy the following inequalities
1. $(x-2)(x-1)>0$
2.
$(x+3)(x-5) \ge 0$
3.
$x^{2}-4x>3$
4.
$4x^{2}<1$
5.
$5x^{2}>3x+2$
6.
$(x-1)^{2}>9$
7.
$(3-2x)(x+5) \le 0$
8.
$(1-x)(4-x)>x+11$
1.7
Solving simultaneous equations
Solve
the following sets of equations
1. $5x+2y=7$,$2x+y=2$
2. $x-2y=5$,$3x+y=8$
3. $2x+3y=1$,$3x+y=5$
4. $3x-2y=5$,$2x+y=8$
5. $3x+5y=1$,$2x+3y=0$
6. $5x+4y=1$,$7x+5y=2$
7. $x^{2}+y^{2}=5$,$y-x=1$
8. $3x^{2}-y^{2}=3$,$2x-y=1$
9. $y^{2}-xy=14$,$y=3-x$
10. $xy=2$,$x+y-3=0$
11. $xy+y^{2}=2$,$2x+y=3$
12. $xy+x=-3$,$2x+5y=8$
1.8 Equation
reducible to quadratic equation
A) Solve
each equations for $x$.
1.
$x^{4}-13x^{2}+36=0$
2.
$x^{4}-2x^{2}-3=0$
3.
$x^{6}-28x^{3}+27=0$
4.
$x^{6}+5x^{3}-24=0$
5. $x-5\sqrt{x}+6=0$
6.
$x-6\sqrt{x}+5=0$
7.
$x^{4}+x^{2}=12$
8.
$x=4\sqrt{x}-3$
9.
$x^{8}+16=17x^{4}$
10.
$x^{6}=8+2x^{3}$
11.
$8\sqrt{x}=15+x$
12.
$65x^{4}=16+4x^{8}$
13.
$x^{4}-26x^{2}+25=0$
14.
$x^{6}-9x^{3}+8=0$
15.
$x^{6}+7x^{3}-8=0$
16.
$e^{2x}+25=26e^{2x}$
B) Solve
each of these equations for $x$
1. $(x+3)^{2}-5(x+3)+4=0$
2. $(3x-1)^{2}+6(3x-1)=7$
3. Solve $y^{2}-7y+10=0$. Hence, find the solution to
$(x^{2}+1)^{2}-7(x^{2}+1)+10=0$
4. Solve
$y^{2}-5y-14=0$. Hence, find the solutions to $(x^{3}-1)^{2}-5(x^{3}-1)-14=0$
5. Solve
the equation $x^{4}-4x^{2}+3=0$
6. Solve
the equation $3y^{4}-2y^{2}-7=0$
7. Find
where the line $y=x+3$ crosses the circle $x^{2}+y^{2}=20$
8. A
recrangle tile has length $x$cm and breath $(6-x)$cm. Given that the area of
the tile must be at least $5$cm$^{2}$, form a quadratic inequalities in $x$ and
hence find the set of possible values of $x$.
1.9
Mixed Exercise
1. Find
the range of values of $k$ for which the quadratic equation
$x^{2}+(k-4)x+(k-1)=0$ has real distinct roots.
2. The
quadratic equation $x^{2}+6x+1=k(x^{2}+1)$ has equal roots. Find the possible
values of the constant $k$.
3. Solve
the simultaneous equation $y=x-2$, $y^{2}=x$
4. Show
that the elimination of $x$ from the simultaneous equations
$x-2y=1$,$3xy-y^{2}=8$ produces the equation $5y^{2}+3y-8=0$. Solve this
equation and hence find the pairs $(x,y)$ for which the simultaneous equations
are satisfied.
5. Solve
the simultaneous equations $x+y=2$,$x^{2}+2y^{2}=11$
6. Find
the set of values of $x$ for which $2x(x-3)>(x+2)(x-3)$
7. Find
the set of values of $x$ for which $2(x^{2}-5)<x^{2}+6$
8. Find
the set of values of $x$ for which $x^{2}-x-12>0$
9. Find
the values of $k$ for which the line $x+3y=k$ and the curve $y^{2}=2x+3$ do not
intersect
10. Find
the values of $m$ for which the line $y=mx-9$ is a tangent to the curve
$x^{2}=4y$
11. Find
the values of $k$ for which the line $y=kx-2$ meets the curve $y^{2}=4x-x^{2}$
12. Find
the value of $m$ for which the line $y=mx-3$ is a tangent to the curve
$y=x+\frac{1}{x}$ and find the $x$-coordinate of the point at which this
tangent touches the curve.
13. Find
the value of $c$ and of $d$ for which {$x:-5<x<3$} is the solution set of
$x^{2}+cx<d$
14. Find
the values of the constant $c$ for which the line $2y=x+c$ is tangent to the
curve $y=2x+\frac{6}{x}$
Comments
Post a Comment