Trigonometry(Part 3)

Trigonometry (Part 3)



6.16 Solution of trigonometric equations

For questions 1 to 8, solve the equations for 0x360, giving your answers correct to one decimal place
1. a. sin(x+20)=0.4
b. cos(x50)=0.3
2. sin2x=6cosx
3. 3sin2x=2sinx
4. 2sec2x1=3tanx
5. 2cos2x5cosx+3=0
6. 73cos2x10sinx=0
7. a. 3sin2θ=sinθ
b. 4cosθ=3sin2θ
c. sin2θ+cosθ=0
d. 3cos2θcosθ+2=0
8. a. 3cot(θ10)=4
b. 4cot2θ+6=11cotθ
c. 5sec2θ23secθ=10
d. 9sec2θ=24secθ16
e. 8cosec2θ=14cosecθ5
f. 2sec2θtanθ3=0
g. 2cosec2θ+cotθ=8
h. 5tanθ+6=2sec2θ
i. 3cosθ+3=5cosec2θ
j. 2sinθ+1=3cosec2θ
k. 3sec2θ=7+5cotθ

9. Given that cosecC=7, sin2D=12, and tan2E=4, find the possible values of cotC, secD and cosecE, giving your answers in exact form.

10. Solve these equations for values of A between 0 and 2π inclusive.
     a. cos2A+3+4cosA=0
     b. 2cos2A+1+sinA=0

6.17 More exercise

1. Prove the identity cotθtanθ2cot2θ

2. i) Express 4sinθ3cosθ in the form Rsin(θα), where R>0 and 0<α<90, stating the value α correct to 2 decimal places.
Hence,
ii) solve the equation 4sinθ3cosθ=2, giving all values of θ such that 0<θ<360
iii) write down the greatest value of 14sinθ3cosθ+6

3. i) Show that the equation sin(x60)cos(30x)=1 can be written in the form cosx=k, where k is a constant.
ii) Hence solve the equation, for 0<x<180

4. Prove the identity cotxcot2xcosec2x

5. Solve the equation cosθ+3cos2θ=2, giving all solutions in the interval 0θ180

6. Sketch the graph of y=secx, for 0x2π

7. Prove the identity sin2θcos2θ18(1cos4θ)

8. i) Show that the equation tan(45+x)=2tan(45x) can be written in the form tan2x6tanx+1=0
ii) Hence solve the equation tan(45+x)=2tan(45x), for 0<x<90

9. i) Prove the identity cos4θ+4cos2θ8cos4θ3
ii) Hence solve the equation cos4θ+4cos2θ=2, for 0θ360

10. By expressing 8sinθ6cosθ in the form Rsin(θα), solve the equation 8sinθ6cosθ=7, for 0θ360.

11. i) Express 7cosθ+24sinθ in the form Rcos(θα), where R>0 and 0<α<90, giving the exact value of R and the value of α correct to 2 decimal places
  ii) Hence solve the equation 7cosθ+24sinθ=15, giving all solutions in the interval 0θ360.

12. Solve the equation tanxtan2x=1, giving all solutions in the interval 0<x<180

13. Express cosθ+(3)sinθ in the form Rcos(θα), where R>0 and 0<α<12π, giving the exact values of R and α

14. i) Show that the equation tan(45+x)tanx=2 can be written in the form tan2x+2tanx1=0
  ii) Hence solve the equation tan(45+x)tanx=2, giving all solutions in the interval 0θ180.

15. i) Show that the equation tan(30+θ)=2tan(60θ) can be written in the form tan2θ+(63)tanθ5=0
  ii) Hence, or otherwise, solve the equation tan(30+θ)=2tan(60θ), for 0θ180.

16. i) Express 5sinx+12cosx in the form Rsin(x+α), where R>0 and 0<α<90, giving the value of α correct to 2 decimal places
      ii) Hence solve the equation 5sin2θ+12cos2θ=11, giving all solutions in the interval 0<θ<180

Comments

Popular Posts