Trigonometry(Part 3)
Trigonometry
(Part 3)
6.16 Solution of trigonometric
equations
For questions
1 to 8, solve the equations for 0∘≤x≤360∘, giving your
answers correct to one decimal place
1. a. sin(x+20∘)=0.4
b.
cos(x−50∘)=−0.3
2. sin2x=6cosx
3. 3sin2x=2sinx
4. 2sec2x−1=3tanx
5. 2cos2x−5cosx+3=0
6. 7−3cos2x−10sinx=0
7. a. 3sin2θ=sinθ
b.
4cosθ=3sin2θ
c.
sin2θ+cosθ=0
d.
3cos2θ−cosθ+2=0
8. a. 3√cot(θ−10∘)=4
b.
4cot2θ+6=11cotθ
c.
5sec2θ–23secθ=10
d.
9sec2θ=24secθ−16
e.
8cosec2θ=14cosecθ−5
f.
2sec2θ−tanθ−3=0
g.
2cosec2θ+cotθ=8
h.
5tanθ+6=2sec2θ
i.
3cosθ+3=5cosec2θ
j.
2sinθ+1=3cosec2θ
k.
3sec2θ=7+5cotθ
9. Given
that cosecC=7, sin2D=12, and tan2E=4, find the
possible values of cotC, secD and cosecE, giving your answers in
exact form.
10.
Solve these equations for values of A between 0 and 2π inclusive.
a. cos2A+3+4cosA=0
b. 2cos2A+1+sinA=0
6.17 More exercise
1. Prove
the identity cotθ−tanθ≡2cot2θ
2. i)
Express 4sinθ–3cosθ in the form Rsin(θ−α),
where R>0 and 0∘<α<90∘, stating the value α
correct to 2 decimal places.
Hence,
ii)
solve the equation 4sinθ–3cosθ=2, giving all values of θ
such that 0∘<θ<360∘
iii)
write down the greatest value of 14sinθ–3cosθ+6
3. i)
Show that the equation sin(x−60∘)−cos(30∘−x)=1 can be
written in the form cosx=k, where k is a constant.
ii)
Hence solve the equation, for 0∘<x<180∘
4. Prove
the identity cotx−cot2x≡cosec2x
5. Solve
the equation cosθ+3cos2θ=2, giving all solutions in the
interval 0∘≤θ≤180∘
6.
Sketch the graph of y=secx, for 0≤x≤2π
7. Prove
the identity sin2θcos2θ≡18(1−cos4θ)
8. i)
Show that the equation tan(45∘+x)=2tan(45∘−x) can be
written in the form tan2x−6tanx+1=0
ii)
Hence solve the equation tan(45∘+x)=2tan(45∘−x), for 0∘<x<90∘
9. i)
Prove the identity cos4θ+4cos2θ≡8cos4θ−3
ii)
Hence solve the equation cos4θ+4cos2θ=2, for 0∘≤θ≤360∘
10. By
expressing 8sinθ–6cosθ in the form Rsin(θ−α),
solve the equation 8sinθ–6cosθ=7, for 0∘≤θ≤360∘.
11. i)
Express 7cosθ+24sinθ in the form Rcos(θ−α),
where R>0 and 0∘<α<90∘, giving the exact
value of R and the value of α correct to 2 decimal places
ii)
Hence solve the equation 7cosθ+24sinθ=15, giving all
solutions in the interval 0∘≤θ≤360∘.
12.
Solve the equation tanxtan2x=1, giving all solutions in the interval 0∘<x<180∘
13.
Express cosθ+(√3)sinθ in the form Rcos(θ−α), where R>0 and 0<α<12π, giving the
exact values of R and α
14. i)
Show that the equation tan(45∘+x)−tanx=2 can be written in the
form tan2x+2tanx−1=0
ii)
Hence solve the equation tan(45∘+x)−tanx=2, giving all solutions
in the interval 0∘≤θ≤180∘.
15. i)
Show that the equation tan(30∘+θ)=2tan(60∘−θ) can
be written in the form tan2θ+(6√3)tanθ–5=0
ii)
Hence, or otherwise, solve the equation tan(30∘+θ)=2tan(60∘−θ),
for 0∘≤θ≤180∘.
16. i)
Express 5sinx+12cosx in the form Rsin(x+α), where R>0 and 0∘<α<90∘, giving the value of α correct to 2 decimal
places
ii) Hence solve the equation 5sin2θ+12cos2θ=11, giving all solutions in the interval 0∘<θ<180∘
Comments
Post a Comment