Trigonometry(Part 3)
Trigonometry
(Part 3)
6.16 Solution of trigonometric
equations
For questions
1 to 8, solve the equations for $0^{\circ} \le x \le 360^{\circ}$, giving your
answers correct to one decimal place
1. a. $\sin
(x+20^{\circ})=0.4$
b.
$\cos (x-50^{\circ})=-0.3$
2. $\sin
2x=6\cos x$
3. $3\sin
2x=2\sin x$
4. $2\sec
^{2}x-1=3\tan x$
5. $2\cos
2x -5\cos x+3=0$
6. $7-3\cos
2x-10\sin x=0$
7. a. $3\sin
2\theta =\sin \theta$
b.
$4\cos \theta = 3\sin 2\theta$
c.
$\sin 2\theta + \cos \theta = 0$
d.
$3\cos 2\theta - \cos \theta +2=0$
8. a. $3\sqrt{\cot
(\theta -10^{\circ})}=4$
b.
$4\cot ^{2}\theta +6=11\cot \theta$
c.
$5\sec ^{2}\theta – 23\sec \theta =10$
d.
$9\sec ^{2}\theta = 24\sec \theta -16$
e.
$8$cosec$^{2}\theta=14$cosec$\theta - 5$
f.
$2\sec ^{2}\theta - \tan \theta -3=0$
g.
$2$cosec$^{2}\theta +\cot \theta =8$
h.
$5\tan \theta +6=2\sec ^{2}\theta$
i.
$3\cos \theta +3=\frac{5}{cosec ^{2}\theta}$
j.
$2\sin \theta +1=\frac{3}{cosec^{2}\theta}$
k.
$3\sec ^{2}\theta = 7+\frac{5}{\cot \theta}$
9. Given
that cosec$C=7$, $\sin ^{2}D=\frac{1}{2}$, and $\tan ^{2}E=4$, find the
possible values of $\cot C$, $\sec D$ and cosec$E$, giving your answers in
exact form.
10.
Solve these equations for values of $A$ between $0$ and $2\pi$ inclusive.
a. $\cos 2A+3+4\cos A=0$
b. $2\cos 2A+1+\sin A=0$
6.17 More exercise
1. Prove
the identity $\cot \theta - \tan \theta \equiv 2\cot 2\theta$
2. i)
Express $4\sin \theta – 3\cos \theta$ in the form $R\sin (\theta - \alpha)$,
where $R>0$ and $0^{\circ}< \alpha <90^{\circ}$, stating the value $\alpha$
correct to $2$ decimal places.
Hence,
ii)
solve the equation $4\sin \theta – 3\cos \theta =2$, giving all values of $\theta$
such that $0^{\circ}<\theta < 360^{\circ}$
iii)
write down the greatest value of $\frac{1}{4\sin \theta – 3\cos \theta +6}$
3. i)
Show that the equation $\sin (x-60^{\circ})-\cos (30^{\circ}-x)=1$ can be
written in the form $\cos x=k$, where $k$ is a constant.
ii)
Hence solve the equation, for $0^{\circ}< x <180^{\circ}$
4. Prove
the identity $\cot x - \cot 2x \equiv$cosec$2x$
5. Solve
the equation $\cos \theta + 3\cos 2\theta = 2$, giving all solutions in the
interval $0^{\circ} \le \theta \le 180^{\circ}$
6.
Sketch the graph of $y=\sec x$, for $0\le x \le 2\pi$
7. Prove
the identity $\sin ^{2}\theta \cos ^{2}\theta \equiv \frac{1}{8}(1-\cos 4\theta)$
8. i)
Show that the equation $\tan (45^{\circ}+x)=2\tan (45^{\circ}-x)$ can be
written in the form $\tan ^{2}x-6\tan x+1=0$
ii)
Hence solve the equation $\tan (45^{\circ}+x)=2\tan (45^{\circ}-x)$, for $0^{\circ}<
x < 90^{\circ}$
9. i)
Prove the identity $\cos 4\theta + 4\cos 2\theta \equiv 8\cos ^{4}\theta -3$
ii)
Hence solve the equation $\cos 4\theta + 4\cos 2\theta =2$, for $0^{\circ}\le
\theta \le 360^{\circ}$
10. By
expressing $8\sin \theta – 6\cos \theta$ in the form $R\sin (\theta - \alpha)$,
solve the equation $8\sin \theta – 6\cos \theta =7$, for $0^{\circ}\le \theta
\le 360^{\circ}$.
11. i)
Express $7\cos \theta +24\sin \theta$ in the form $R\cos (\theta - \alpha)$,
where $R>0$ and $0^{\circ}< \alpha < 90^{\circ}$, giving the exact
value of $R$ and the value of $\alpha$ correct to $2$ decimal places
ii)
Hence solve the equation $7\cos \theta +24\sin \theta =15$, giving all
solutions in the interval $0^{\circ}\le \theta \le 360^{\circ}$.
12.
Solve the equation $\tan x\tan 2x=1$, giving all solutions in the interval $0^{\circ}<
x < 180^{\circ}$
13.
Express $\cos \theta +(\sqrt{3})\sin \theta$ in the form $R\cos (\theta -
\alpha)$, where $R>0$ and $0 < \alpha < \frac{1}{2}\pi$, giving the
exact values of $R$ and $\alpha$
14. i)
Show that the equation $\tan (45^{\circ}+x)-\tan x=2$ can be written in the
form $\tan ^{2}x+2\tan x-1=0$
ii)
Hence solve the equation $\tan (45^{\circ}+x)-\tan x=2$, giving all solutions
in the interval $0^{\circ}\le \theta \le 180^{\circ}$.
15. i)
Show that the equation $\tan (30^{\circ}+\theta)=2\tan (60^{\circ}-\theta)$ can
be written in the form $\tan ^{2}\theta +(6\sqrt{3})\tan \theta – 5=0$
ii)
Hence, or otherwise, solve the equation $\tan (30^{\circ}+\theta)=2\tan (60^{\circ}-\theta)$,
for $0^{\circ}\le \theta \le 180^{\circ}$.
16. i)
Express $5\sin x+12\cos x$ in the form $R\sin (x+\alpha)$, where $R>0$ and $0^{\circ}<
\alpha <90^{\circ}$, giving the value of $\alpha$ correct to $2$ decimal
places
ii) Hence solve the equation $5\sin 2\theta
+ 12\cos 2\theta = 11$, giving all solutions in the interval $0^{\circ}<
\theta < 180^{\circ}$
Comments
Post a Comment