Trigonometry (Part 2)
Trigonometry
(Part 2)
6.9 Introduction
1. Find,
giving your answers to $3$ decimal places
a. $\cot
304^{\circ}$
b. $\sec
(-48^{\circ})$
c. cosec
$62^{\circ}$
2. Using
a calculator where necessary, find the values of the following, giving an
non-exact answers correct to $3$ significant figures
a. $\sin
\frac{2\pi}{5}$
b. $\sec
\frac{\pi}{10}$
c. $\cot
\frac{\pi}{12}$
d. cosec
$\frac{17\pi}{6}$
e. $\cos
\frac{7\pi}{8}$
f. $\tan \frac{5\pi}{12}$
g. $\sec (-\frac{11\pi}{12})$
h. $\cot
(-\frac{\pi}{6})$
3. Find
the exact values of
a. $\sec
\frac{\pi}{4}$
b. cosec
$\frac{\pi}{2}$
c. $\cot
\frac{5\pi}{6}$
d. cosec
$(-\frac{3\pi}{4})$
e. $\cot
(-\frac{\pi}{3})$
f. $\sec
\frac{13\pi}{6}$
g. $\cot
(-\frac{5\pi}{2})$
h. $\sec
\frac{7\pi}{6}$
4. Given
that $\sin A=\frac{4}{5}$ and that $A$ is acute, without using a calculator,
find the value of each of these
a. $\sec
A$
b. cosec
$A$
c. $\cot
A$
5. Given
that $\tan \theta=-\frac{1}{2}$ and $90^{\circ} < \theta < 360^{\circ}$,
without using calculator, find the value of each of these
a. $\sec
\theta$
b. cosec
$\theta$
c. $\cot
\theta$
6. Given
that $\cos \theta=-\frac{1}{4}$ and $180^{\circ}<\theta <360^{\circ}$,
without using a calculator, find the value of each of these
a. $\sec
\theta$
b. cosec
$\theta$
c. $\cot
\theta$
7. Given
that $\sec \theta=2$ and $0^{\circ}<\theta <180^{\circ}$, without using a
calculator, find the value of each of these
a. $\sec
\theta$
b. cosec
$\theta$
c. $\cot
\theta$
8. Given
that cosec $B=3$ and that B is acute angle, without using a calculator, find
the value of these
a. $\cos(90^{\circ}+B)$
b. $\tan(90^{\circ}-B)$
c. $\cot
B$
9. Given
that $\cot B=\frac{5}{2}$ and that $B$ is acute angle, without using a
calculator, find the value of each these
a. $\sin
B$
b. $\sin
(90^{\circ}-B)$
c. $\sec
(90^{\circ}-B)$
10. For
$-360^{\circ} \le \theta \le 360^{\circ}$, sketch the graphs of the followings :
a. $y=\sin
\theta$
b. $y=$ cosec
$\theta$
c. $y=\cos
\theta$
d. $y=\sec \theta$
e. $y=\tan \theta$
f. $y=\cot
\theta$
6.10 Compound angles
Solve
these following questions without using a calculator
1. Given
that $A$ and $B$ are acute angles and that $\sin A=\frac{3}{5}$ and that $\cos
B=\frac{5}{13}$, find the value of each of these
a. $\sin
(A+B)$
b. $\cos
(A-B)$
c. $\tan
(A-B)
2. Given
that $C$ and $D$ are acute angles and that $\cos C=\frac{12}{13}$ and that $\cos
D=\frac{3}{5}$, find the value of each of these
a. $\cos
(C+D)$
b. $\cos
(C-D)$
c. $\cot
(C+D)$
3. Given
that $P$ and $Q$ are acute angles and that $\tan P=\frac{7}{24}$ and that $\tan
Q=1$, find the value of each of these
a. $\sin (P+Q)$
b. $\cos (P+Q)$
c. $\tan
(P-Q)$
4. Given
that $\tan (A-B)=\frac{1}{2}$ and that $\tan A=3$, find the value of $\tan B$
5. Given
that $\tan (P+Q)=5$ and that $\tan Q=2$, find the value of $\tan P$
6. Given
that $\tan (\theta – 45^{\circ})=4$, find the value of $\tan \theta$
7. Given
that $\tan (\theta +60^{\circ})=2$, find the value of $\cot \theta$
8. Given
that $\cot (30^{\circ}-\theta)=3$, find the value of $\cot \theta$
9. Find
the value of $\tan \theta$ for each of these:
a. $\sin
(\theta – 30^{\circ})=\cos \theta$
b. $\sin
(\theta + 45^{\circ})=\cos \theta$
c. $\cos
(\theta + 60^{\circ})=\sin \theta$
d. $\sin
(\theta + 60^{\circ})=\cos (\theta – 60^{\circ})$
e. $\cos
(\theta + 60^{\circ})=2\cos (\theta + 30^{\circ})$
f. $\sin
(\theta + 60^{\circ})=\cos (45^{\circ}-\theta)$
10. By
writing $75$ as $30+45$, find the exact values of $\sin 75^{\circ}$ and $\tan
75^{\circ}$
11. Find
the exact values of
a. $\cos
105^{\circ}$
b. $\sin
105^{\circ}$
c. $\tan
105^{\circ}$
12.
Express $\cos (x+\frac{\pi}{3})$ in terms of $\cos x$ and $\sin x$
13. Use
the expansions for $\sin (A+B)$ and $\cos (A+B)$ to simplify $\sin (\frac{3\pi}{2}+\theta)$
and $\cos (\frac{\pi}{2}+\theta)$
14.
Express $\tan (\frac{\pi}{3}+x)$ and $\tan (\frac{5\pi}{6}-x)$ in terms of $\tan
x$.
6.11 Double angles
1. Given
that $\theta$ is an acute and that $\sin \theta = \frac{4}{5}$, find the value
of each of these
a. $\sin
2\theta$
b. $\cos
2\theta$
c. $\tan
2\theta$
2. Given
that $\theta$ is an acute and that $\cos \theta = \frac{5}{13}$, find the value
of each of these
a. $\cos
2\theta$
b. cosec
$2\theta$
c. $\cot
2\theta$
3. Given
that $\theta$ is an acute and that $\tan \theta = 2$, find the value of each of
these
a. $\tan
2\theta$
b. $\sin
2\theta$
c. $\sec
2\theta$
6.12 Half angle
1. Solve
each of the following equations for $-360^{\circ} \le \theta \le 360^{\circ}$,
giving your answers correct to one decimal place
a. $\sin
\theta = \sin \frac{\theta}{2}$
b. $3\cos
\frac{\theta}{2}=2\sin \theta$
c. $2\sin
\theta = \tan \frac{\theta}{2}$
d. $2\cos
\theta = 15\cos \frac{\theta}{2}+2$
2. By
writing $\cos A$ in terms of $\frac{A}{2}$, find the alternative expression for
$\frac{1-\cos A}{1+\cos A}$
3. If $\tan
2A=1$, find the possible values of $\tan A$. Hence state the exact value of $\tan
22\frac{1}{2}^{\circ}$
6.13 Mixed exercise
1. If $\frac{\sin
(A-B)}{\sin (A+B)}=2$, find the value of $\tan A \cot B$
2. If $\tan
60^{\circ}=\sqrt{3}$, without using a calculator, show that $\tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}$
3. Prove
that $2\sin (X+45^{\circ})\cos (X+45^{\circ})=\cos 2X$
4. Prove
that $2\sin (Y+45^{\circ})\cos (Y-45^{\circ})=\cos 2Y$
5. If $\tan
\theta = \frac{3}{4}$ and $180^{\circ}\le \theta \le 270^{circ}$, without using
a calculator, find
a. $\tan
2\theta$
b. $\tan
3\theta$
c. $\tan
\frac{1}{2}\theta$
6. If $P=Q+R$,
prove that $\tan P-\tan Q-\tan R=\tan P\tan Q\tan R$
7. If $X+Y=45^{\circ}$,
prove that $\tan X+\tan Y+\tan X\tan Y=1$
6.14 Trigonometric identities
1. Prove
the following identities:
a. $\frac{1-\cos
^{2}A}{1-\sin ^{2}A}+\tan A\cot A=\sec ^{2}A$
b. $(\cot
\theta + \tan \theta)\cos \theta =$ cosec$ \theta$
c. $\cot
\theta - \tan \theta = 2\cot 2\theta$
d. $cosec
\theta - \sin \theta = \cos \theta \cot \theta$
2. Show
that $\tan A = $ cosec $2A-\cot 2A$. Hence prove that $\tan 22.5^{\circ}=\sqrt{2}-1$
3. $(1-\sin
x)\sec x = \frac{\cos x}{1+\sin x}$
4. $\cot
x + \tan x=\frac{1}{\sin x \cos x}$
5. cosec $x- \sin x=\frac{\cos x}{\tan x}$
6. $(\sin
\theta +\cos \theta)^{2}-1=2\sin \theta \cos \theta$
7. $(\sin
\theta + \cos \theta)(1-\frac{1}{2}\sin 2\theta)=\sin ^{3}\theta + \cos ^{3}\theta$
8. $2\cos
^{3}\theta + \sin 2\theta \sin \theta = 2\cos \theta$
9. $\cos
4\theta – 4\cos 2\theta + 3 \equiv 8\sin ^{4}\theta$
6.15 Harmonic form [$a\sin \theta
+ b\cos \theta = R\sin (\theta + \alpha)$]
1. Find
the following value of $R$ and $\tan \alpha$ in each of the following
identities
a. $2\sin
\theta + 4\cos \theta = R\sin (\theta + \alpha)$
b. $5\sin
\theta - 12\cos \theta = R\sin (\theta - \alpha)$
c. $2\cos
\theta + 5\sin \theta = R\cos (\theta - \alpha)$
d. $\cos
\theta - \sin \theta = R\cos (\theta + \alpha)$
e. $5\sin
2\theta - 12\cos 2\theta = R\sin (2\theta - \alpha)$
f. $2\cos
2\theta + 5\sin 2\theta = R\cos (2\theta - \alpha)$
2. Find
the greatest and least values of each of the following expressions, and state,
correct to one decimal place, the smallest non-negative value of $\theta$ for
which each occurs.
a. $12\sin
\theta + 5\cos \theta$
b. $2\cos
\theta + \sin \theta$
c. $7+3\sin
\theta - 4\cos \theta$
d. $10-2\sin
\theta + \cos \theta$
3. Solve
each of the following equations for $0^{\circ}\le \theta \le 360^{\circ}$,
giving your answers correct to one decimal place
a. $7\sin
\theta – 4\cos \theta = 3$
b. $\cos
\theta – 3\sin \theta = 2$
4. Express
$3\cos x-4\sin x$ in the form $R\cos (x+\alpha)$ where $R>0$, and $0^{\circ}<\alpha <90^{\circ}$.
Hence
a. Solve the equation $3\cos x-4\sin x = 2$,
giving all the solution between 0 and 360.
b. Find the greatest and least values, as
$x$ varies, of the expression $\frac{1}{3\cos x-4\sin x+8}$
5. Given
that $3\cos x-4\sin x=R\cos (x+\alpha)$, where $R>0$ and $0^{\circ}<
\alpha < 90^{\circ}$, find the values of $R$ and $\alpha$. Hence solve the
equation $3\cos 2\theta – 4\sin 2\theta =2$, for $0^{\circ}< \theta <
360^{\circ}$.
6.
Express $5\sin \theta + 12\cos \theta$ in the form $r\sin (\theta + \alpha)$,
where $r>0$ and $0^{\circ}< \alpha < 90^{\circ}$. Hence, find the
maximum and minimum values of the expression $\frac{1}{5\sin \theta +12\cos \theta
+15}$.
Comments
Post a Comment