Trigonometry (Part 2)
Trigonometry
(Part 2)
6.9 Introduction
1. Find,
giving your answers to 3 decimal places
a. cot304∘
b. sec(−48∘)
c. cosec
62∘
2. Using
a calculator where necessary, find the values of the following, giving an
non-exact answers correct to 3 significant figures
a. sin2π5
b. secπ10
c. cotπ12
d. cosec
17π6
e. cos7π8
f. tan5π12
g. sec(−11π12)
h. cot(−π6)
3. Find
the exact values of
a. secπ4
b. cosec
π2
c. cot5π6
d. cosec
(−3π4)
e. cot(−π3)
f. sec13π6
g. cot(−5π2)
h. sec7π6
4. Given
that sinA=45 and that A is acute, without using a calculator,
find the value of each of these
a. secA
b. cosec
A
c. cotA
5. Given
that tanθ=−12 and 90∘<θ<360∘,
without using calculator, find the value of each of these
a. secθ
b. cosec
θ
c. cotθ
6. Given
that cosθ=−14 and 180∘<θ<360∘,
without using a calculator, find the value of each of these
a. secθ
b. cosec
θ
c. cotθ
7. Given
that secθ=2 and 0∘<θ<180∘, without using a
calculator, find the value of each of these
a. secθ
b. cosec
θ
c. cotθ
8. Given
that cosec B=3 and that B is acute angle, without using a calculator, find
the value of these
a. cos(90∘+B)
b. tan(90∘−B)
c. cotB
9. Given
that cotB=52 and that B is acute angle, without using a
calculator, find the value of each these
a. sinB
b. sin(90∘−B)
c. sec(90∘−B)
10. For
−360∘≤θ≤360∘, sketch the graphs of the followings :
a. y=sinθ
b. y= cosec
θ
c. y=cosθ
d. y=secθ
e. y=tanθ
f. y=cotθ
6.10 Compound angles
Solve
these following questions without using a calculator
1. Given
that A and B are acute angles and that sinA=35 and that cosB=513, find the value of each of these
a. sin(A+B)
b. cos(A−B)
c. $\tan
(A-B)
2. Given
that C and D are acute angles and that cosC=1213 and that cosD=35, find the value of each of these
a. cos(C+D)
b. cos(C−D)
c. cot(C+D)
3. Given
that P and Q are acute angles and that tanP=724 and that tanQ=1, find the value of each of these
a. sin(P+Q)
b. cos(P+Q)
c. tan(P−Q)
4. Given
that tan(A−B)=12 and that tanA=3, find the value of tanB
5. Given
that tan(P+Q)=5 and that tanQ=2, find the value of tanP
6. Given
that tan(θ–45∘)=4, find the value of tanθ
7. Given
that tan(θ+60∘)=2, find the value of cotθ
8. Given
that cot(30∘−θ)=3, find the value of cotθ
9. Find
the value of tanθ for each of these:
a. sin(θ–30∘)=cosθ
b. sin(θ+45∘)=cosθ
c. cos(θ+60∘)=sinθ
d. sin(θ+60∘)=cos(θ–60∘)
e. cos(θ+60∘)=2cos(θ+30∘)
f. sin(θ+60∘)=cos(45∘−θ)
10. By
writing 75 as 30+45, find the exact values of sin75∘ and tan75∘
11. Find
the exact values of
a. cos105∘
b. sin105∘
c. tan105∘
12.
Express cos(x+π3) in terms of cosx and sinx
13. Use
the expansions for sin(A+B) and cos(A+B) to simplify sin(3π2+θ)
and cos(π2+θ)
14.
Express tan(π3+x) and tan(5π6−x) in terms of tanx.
6.11 Double angles
1. Given
that θ is an acute and that sinθ=45, find the value
of each of these
a. sin2θ
b. cos2θ
c. tan2θ
2. Given
that θ is an acute and that cosθ=513, find the value
of each of these
a. cos2θ
b. cosec
2θ
c. cot2θ
3. Given
that θ is an acute and that tanθ=2, find the value of each of
these
a. tan2θ
b. sin2θ
c. sec2θ
6.12 Half angle
1. Solve
each of the following equations for −360∘≤θ≤360∘,
giving your answers correct to one decimal place
a. sinθ=sinθ2
b. 3cosθ2=2sinθ
c. 2sinθ=tanθ2
d. 2cosθ=15cosθ2+2
2. By
writing cosA in terms of A2, find the alternative expression for
1−cosA1+cosA
3. If tan2A=1, find the possible values of tanA. Hence state the exact value of tan2212∘
6.13 Mixed exercise
1. If sin(A−B)sin(A+B)=2, find the value of tanAcotB
2. If tan60∘=√3, without using a calculator, show that tan15∘=√3−1√3+1
3. Prove
that 2sin(X+45∘)cos(X+45∘)=cos2X
4. Prove
that 2sin(Y+45∘)cos(Y−45∘)=cos2Y
5. If tanθ=34 and 180∘≤θ≤270circ, without using
a calculator, find
a. tan2θ
b. tan3θ
c. tan12θ
6. If P=Q+R,
prove that tanP−tanQ−tanR=tanPtanQtanR
7. If X+Y=45∘,
prove that tanX+tanY+tanXtanY=1
6.14 Trigonometric identities
1. Prove
the following identities:
a. 1−cos2A1−sin2A+tanAcotA=sec2A
b. (cotθ+tanθ)cosθ= cosecθ
c. cotθ−tanθ=2cot2θ
d. cosecθ−sinθ=cosθcotθ
2. Show
that tanA= cosec 2A−cot2A. Hence prove that tan22.5∘=√2−1
3. (1−sinx)secx=cosx1+sinx
4. cotx+tanx=1sinxcosx
5. cosec x−sinx=cosxtanx
6. (sinθ+cosθ)2−1=2sinθcosθ
7. (sinθ+cosθ)(1−12sin2θ)=sin3θ+cos3θ
8. 2cos3θ+sin2θsinθ=2cosθ
9. cos4θ–4cos2θ+3≡8sin4θ
6.15 Harmonic form [asinθ+bcosθ=Rsin(θ+α)]
1. Find
the following value of R and tanα in each of the following
identities
a. 2sinθ+4cosθ=Rsin(θ+α)
b. 5sinθ−12cosθ=Rsin(θ−α)
c. 2cosθ+5sinθ=Rcos(θ−α)
d. cosθ−sinθ=Rcos(θ+α)
e. 5sin2θ−12cos2θ=Rsin(2θ−α)
f. 2cos2θ+5sin2θ=Rcos(2θ−α)
2. Find
the greatest and least values of each of the following expressions, and state,
correct to one decimal place, the smallest non-negative value of θ for
which each occurs.
a. 12sinθ+5cosθ
b. 2cosθ+sinθ
c. 7+3sinθ−4cosθ
d. 10−2sinθ+cosθ
3. Solve
each of the following equations for 0∘≤θ≤360∘,
giving your answers correct to one decimal place
a. 7sinθ–4cosθ=3
b. cosθ–3sinθ=2
4. Express
3cosx−4sinx in the form Rcos(x+α) where R>0, and 0∘<α<90∘.
Hence
a. Solve the equation 3cosx−4sinx=2,
giving all the solution between 0 and 360.
b. Find the greatest and least values, as
x varies, of the expression 13cosx−4sinx+8
5. Given
that 3cosx−4sinx=Rcos(x+α), where R>0 and 0∘<α<90∘, find the values of R and α. Hence solve the
equation 3cos2θ–4sin2θ=2, for 0∘<θ<360∘.
6.
Express 5sinθ+12cosθ in the form rsin(θ+α),
where r>0 and 0∘<α<90∘. Hence, find the
maximum and minimum values of the expression 15sinθ+12cosθ+15.
Comments
Post a Comment