Trigonometry (Part 2)

Trigonometry (Part 2)



6.9 Introduction

1. Find, giving your answers to 3 decimal places
a. cot304
b. sec(48)
c. cosec 62

2. Using a calculator where necessary, find the values of the following, giving an non-exact answers correct to 3 significant figures
a. sin2π5
b. secπ10
c. cotπ12
d. cosec 17π6
e. cos7π8
f. tan5π12
g. sec(11π12)
h. cot(π6)

3. Find the exact values of
a. secπ4
b. cosec π2
c. cot5π6
d. cosec (3π4)
e. cot(π3)
f. sec13π6
g. cot(5π2)
h. sec7π6

4. Given that sinA=45 and that A is acute, without using a calculator, find the value of each of these
a. secA
b. cosec A
c. cotA

5. Given that tanθ=12 and 90<θ<360, without using calculator, find the value of each of these
a. secθ
b. cosec θ
c. cotθ

6. Given that cosθ=14 and 180<θ<360, without using a calculator, find the value of each of these
a. secθ
b. cosec θ
c. cotθ

7. Given that secθ=2 and 0<θ<180, without using a calculator, find the value of each of these
a. secθ
b. cosec θ
c. cotθ

8. Given that cosec B=3 and that B is acute angle, without using a calculator, find the value of these
a. cos(90+B)
b. tan(90B)
c. cotB

9. Given that cotB=52 and that B is acute angle, without using a calculator, find the value of each these
a. sinB
b. sin(90B)
c. sec(90B)

10. For 360θ360, sketch the graphs of the followings :
a. y=sinθ
b. y= cosec θ
c. y=cosθ
d. y=secθ
e. y=tanθ
f. y=cotθ

6.10 Compound angles

Solve these following questions without using a calculator
1. Given that A and B are acute angles and that sinA=35 and that cosB=513, find the value of each of these
a. sin(A+B)
b. cos(AB)
c. $\tan (A-B)

2. Given that C and D are acute angles and that cosC=1213 and that cosD=35, find the value of each of these
a. cos(C+D)
b. cos(CD)
c. cot(C+D)

3. Given that P and Q are acute angles and that tanP=724 and that tanQ=1, find the value of each of these
a. sin(P+Q)
b. cos(P+Q)
c. tan(PQ)

4. Given that tan(AB)=12 and that tanA=3, find the value of tanB

5. Given that tan(P+Q)=5 and that tanQ=2, find the value of tanP

6. Given that tan(θ45)=4, find the value of tanθ

7. Given that tan(θ+60)=2, find the value of cotθ

8. Given that cot(30θ)=3, find the value of cotθ

9. Find the value of tanθ for each of these:
a. sin(θ30)=cosθ
b. sin(θ+45)=cosθ
c. cos(θ+60)=sinθ
d. sin(θ+60)=cos(θ60)
e. cos(θ+60)=2cos(θ+30)
f. sin(θ+60)=cos(45θ)

10. By writing 75 as 30+45, find the exact values of sin75 and tan75

11. Find the exact values of
a. cos105
b. sin105
c. tan105

12. Express cos(x+π3) in terms of cosx and sinx

13. Use the expansions for sin(A+B) and cos(A+B) to simplify sin(3π2+θ) and cos(π2+θ)

14. Express tan(π3+x) and tan(5π6x) in terms of tanx.

6.11 Double angles

1. Given that θ is an acute and that sinθ=45, find the value of each of these
a. sin2θ
b. cos2θ
c. tan2θ

2. Given that θ is an acute and that cosθ=513, find the value of each of these
a. cos2θ
b. cosec 2θ
c. cot2θ

3. Given that θ is an acute and that tanθ=2, find the value of each of these
a. tan2θ
b. sin2θ
c. sec2θ

6.12 Half angle

1. Solve each of the following equations for 360θ360, giving your answers correct to one decimal place
a. sinθ=sinθ2
b. 3cosθ2=2sinθ
c. 2sinθ=tanθ2
d. 2cosθ=15cosθ2+2

2. By writing cosA in terms of A2, find the alternative expression for 1cosA1+cosA

3. If tan2A=1, find the possible values of tanA. Hence state the exact value of tan2212

6.13 Mixed exercise

1. If sin(AB)sin(A+B)=2, find the value of tanAcotB
2. If tan60=3, without using a calculator, show that tan15=313+1
3. Prove that 2sin(X+45)cos(X+45)=cos2X
4. Prove that 2sin(Y+45)cos(Y45)=cos2Y

5. If tanθ=34 and 180θ270circ, without using a calculator, find
a. tan2θ
b. tan3θ
c. tan12θ

6. If P=Q+R, prove that tanPtanQtanR=tanPtanQtanR
7. If X+Y=45, prove that tanX+tanY+tanXtanY=1

6.14 Trigonometric identities

1. Prove the following identities:
a. 1cos2A1sin2A+tanAcotA=sec2A
b. (cotθ+tanθ)cosθ= cosecθ
c. cotθtanθ=2cot2θ
d. cosecθsinθ=cosθcotθ

2. Show that tanA= cosec 2Acot2A. Hence prove that tan22.5=21
3. (1sinx)secx=cosx1+sinx
4. cotx+tanx=1sinxcosx
5. cosec xsinx=cosxtanx
6. (sinθ+cosθ)21=2sinθcosθ
7. (sinθ+cosθ)(112sin2θ)=sin3θ+cos3θ
8. 2cos3θ+sin2θsinθ=2cosθ
9. cos4θ4cos2θ+38sin4θ

6.15 Harmonic form [asinθ+bcosθ=Rsin(θ+α)]

1. Find the following value of R and tanα in each of the following identities
a. 2sinθ+4cosθ=Rsin(θ+α)
b. 5sinθ12cosθ=Rsin(θα)
c. 2cosθ+5sinθ=Rcos(θα)
d. cosθsinθ=Rcos(θ+α)
e. 5sin2θ12cos2θ=Rsin(2θα)
f. 2cos2θ+5sin2θ=Rcos(2θα)

2. Find the greatest and least values of each of the following expressions, and state, correct to one decimal place, the smallest non-negative value of θ for which each occurs.
a. 12sinθ+5cosθ
b. 2cosθ+sinθ
c. 7+3sinθ4cosθ
d. 102sinθ+cosθ

3. Solve each of the following equations for 0θ360, giving your answers correct to one decimal place
a. 7sinθ4cosθ=3
b. cosθ3sinθ=2

4. Express 3cosx4sinx in the form Rcos(x+α) where R>0,  and 0<α<90. Hence
     a. Solve the equation 3cosx4sinx=2, giving all the solution between 0 and 360.
     b. Find the greatest and least values, as x varies, of the expression 13cosx4sinx+8

5. Given that 3cosx4sinx=Rcos(x+α), where R>0 and 0<α<90, find the values of R and α. Hence solve the equation 3cos2θ4sin2θ=2, for 0<θ<360.


6. Express 5sinθ+12cosθ in the form rsin(θ+α), where r>0 and 0<α<90. Hence, find the maximum and minimum values of the expression 15sinθ+12cosθ+15.

Comments

Popular Posts